Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm
نویسندگان
چکیده
We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.
منابع مشابه
Two-dimensional Axisymmetric Electromechanical Response of Piezoelectric, Functionally Graded and Layered Composite Cylinders
A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered composite hollow circular cylinders of finite length. Under axisymmetric mechanical and electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) plane strain proble...
متن کاملElectromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect
The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on an extension to the classical beam model, this paper investigates the electromechanical coupling response of piezoelectric nanobeams with different electrical boundary conditions including the effect o...
متن کاملCapacitive Micromachined Ultrasonic Transducers: Theory and Technology
Capacitive micromachined ultrasonic transducers ~CMUTs!, introduced about a decade ago, have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency, and bandwidth. In this paper, we discuss the principles of capacitive transducer operation that underlie these aspects. Many of the key features of capacitive u...
متن کاملLEAD-FREE BNKT PIEZOELECTRIC ACTUATOR
An actuator is a device that converts input energy into mechanical energy. According to various types of input energy, various actuators have been advanced. Displacement in the electromagnetic, hydraulic and pneumatic actuators achieve by moving a piston via electromagnetic force or pressure, however the piezoelectric actuator (piezoceramic plates) displace directly. Therefore, accuracy and spe...
متن کاملModified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts...
متن کامل